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Instruments Supported by the Timeseries and Map Objects

Abstract

The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, 
and open source data analysis software for solar physics based on the scienti�c Python environment. The proj-
ect achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of 
a�liated packages. This poster describes the �rst o�cial stable release (version 1.0) of the core package and 
concludes with a discussion of the future of the SunPy project.
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Supported by TimeSeries

Geostationary Operational Environmental Satellite(GOES) X-Ray Sensor (XRS)
Fermi Gamma-ray Burst Monitor (GBM)
Nobeyama Radioheliograph (NoRH)
PRoject for Onboard Autonomy (PROBA2) Large Yield Radiometer (LYRA)
Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE)
Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

Supported by Map

COronal Solar Magnetism Observatory (COSMO) K-coronagraph (K-Cor)
Hinode X-Ray Telescope (XRT)
Interface Region Imaging Spectrograph (IRIS) Slit Jaw Imager (SJI)
PROBA2 Sun Watcher using Active Pixel System detector and Image Processing
(SWAP)
RHESSI
Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope
(EIT)
SOHO Large Angle Spectroscopic COronagraph (LASCO)
SOHO Michelson Doppler Imager (MDI)
SDO Atmospheric Imaging Assembly (AIA)
SDO Helioseismic and Magnetic Imager (HMI)
Solar TErrestrial RElations Observatory (STEREO) Extreme Ultraviolet Imager
(EUVI), COronagraph 1 and 2 (COR1/2) for both STEREO A and B
Transition Region and Coronal Explorer (TRACE)
Yohkoh Soft X-ray Telescope (SXT)

Figure. Example of a GOES XRS TimeSeries visualization over 24 hr. The two colors represent the 
two broadband channels; 1–8 Å (red) and 0.5–4 Å (blue). The sharp increase in �ux at 06:33 UT 
is a solar �are and the gray dashed line indicates the time of the peak provided by the HEK.

Figure. Example of a Map visualization from observations of the 171 Å wavelength channel of AIA on 
board SDO. The left panel shows an image of the entire Sun with the �are position as given by the HEK. 
The right panel shows the cropped view in the white box of the left-hand panel, focusing on an erupt-
ing �are (the same event is shown in the TimeSeries Figure below).

Figure. Diagram of the coordinate frames accessible through sunpy.coordinates, and how they transform between each other. The frames within the blue box are implemented in 
astropy.coordinates, but in the shared framework, any frame can be transformed to any other frame in this diagram.

Data Search and Retrieval

The sunpy package provides core data types that are designed to 
provide a general, standard, and consistent interface for loading 
and representing solar data across di�erent instruments and mis-
sions. The two core data types currently supported in sunpy are 
handled by TimeSeries and Map, objects that support 1D temporal 
data and 2D image data, respectively. The purpose of these core 
classes is to standardize data structures regardless of the data 
source (e.g., observational data from independent instruments). 
The classes maintain a consistent interface for accessing data attri-
butes such as the data array itself as well as the metadata and rele-
vant units. These core classes also include functionality for data 
manipulation and data visualization.

TimeSeries
Many observations in the �eld of solar physics consist of spatially integrated measurements as a 
function of time. For example, the X-Ray Sensor (XRS) instrument on board the Geostationary 
Operational Environmental Satellite (GOES), which is used as the classi�cation standard for solar 
�ares, continuously measures the disk-integrated X-ray �ux as a function of time in two broad-
band channels. The TimeSeries class aims to accommodate such solar time series data. TimeSeries 
allows users to load time series data from a variety of solar instruments with appropriate units and 
timescales. A user can create a TimeSeries object either from data �les stored locally (e.g., observa-
tional data sets acquired through Fido, see Data Aquisition), or manually from custom time series 
data. The data array, metadata, and units data are all stored as attributes in the TimeSeries class.

Map
A majority of solar data is in the form of images of the Sun. Images of the 
Sun are taken in multiple wavelengths from a wide range of both space- 
and ground-based instruments. Images also require precise coordinate 
information in order to compare solar features observed across multiple 
wavelengths with di�erent instruments.  The Map class in sunpy provides a 
framework to contain and analyze image data. A Map can be created from 
local �les or using a URL to a remote data �le. The Map class will automati-
cally detect supported instruments and parse the metadata to infer the 
coordinate system. Other source-speci�c metadata is used to determine the 
appropriate color table and image normalization for visualization. It is also 
possible to create a custom Map by providing a 2D data array and metadata.
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Figure. Left panel: a plot of the steady increase in the total number of lines of code (solid line) and lines of comments/documentation (dotted line) as a function of time. 
Major version releases are indicated along the top axis. A striking reduction in the code base occurred after version 0.9. This period saw a major code reorganization and 
deletion of obsolete features along with removing support for Python 2. Middle panel: the cumulative number of contributors to sunpy as a function of time shows a 
steady increase in the number of people involved in the development team. Right panel: a plot of the distribution of the number of commits per contributor. This distribu-
tion indicates that the majority of commits are undertaken by a small group of contributors. The average number of commits per contributor is less than 10 commits.

Development
As of version 1.0, sunpy consists of 48,427 lines of code contributed by 123 unique contributors with over 11,659 commits. The total number of contributors is large for a package of 
this size in the heliophysics community (Ware et al. 2019). On average, a new contributor is added every month. In order to maintain a high-quality code base, every contribution is 
reviewed and must satisfy a set of strict and documented requirements. Converting new contributors into core developers is crucial to the long-term health of the community.

Coordinates
The sunpy.coordinates subpackage provides support for representing and transforming coordinates used in solar physics. These coordinates may represent events (e.g., �ares), fea-
tures on or above the Sun (e.g., magnetic loops), or the position of structures traveling throughout the heliosphere (e.g., coronal mass ejections). The package currently implements 
many of the most widely used Sun-centered coordinate frames including Helioprojective Cartesian (HPC), Heliographic Carrington (HGC), and Heliographic Stonyhurst (HGS), as 
well as Heliocentric Aries Ecliptic (HAE), Heliocentric Cartesian (HCC), and Heliocentric Earth Equatorial (HEEQ). Additional coordinate frames will be available in future releases. The 
functionality provided in this package is built on top of and integrates with the astropy coordinates framework. A few example applications of the sunpy.coordinates subpackage 
are shown below.

Conclusions
Development of the sunpy core package has been ongoing for
8 yr, with the adoption of a formal project structure 5 yr ago. The
core package has grown to provide signi�cant and now mature
functionality for a growing number of users. The release of version
1.0 is a signi�cant milestone, and comes with a commitment to
stability in future releases. Signi�cant additional features are 
either being actively developed or are planned for future develop-
ment. The SunPy project is a member of the Python in Heliophys-
ics Community and its development is consistent with the PyHC 
standards. SunPy is a NumFocus-sponsored project. We thank the 
members of the community that have contributed to the SunPy 
project, that have opened issues and provided feedback, and that 
have supported the project in a number of other ways.

SunPy is a volunteer-based organization. If you 
make frequent use of sunpy or want to support 
the project consider making a donation!

The paper this poster is based on is available 
free online and includes the code to generate 
most �gures. Scan the qrcode to the right.

The project has de�ned a formal timed 
release and support schedule going forward 
for LTS (long term support) and non-LTS 
releases.

What’s new in version 1.1?
 - Remote data manager
 - Support for GOES/SUVI
 - New coordinate frames (HEE, GSE, HCI, GEI)
 - Initial support for PSP/WISPR �les
 - Import time for sunpy.map reduction by 40%.

A�liated Packages
  Ndcube   radiospectra   IRISpy  drms

Maintainer: Kolja Glogowski Maintainer: Daniel Ryan Maintainer: Daniel RyanMaintainer: David Pérez-Suárez

The IRISPy package pro-
vides tools to read, manipu-
late, and visualize data from 
the NASA Small Explorer mission, IRIS. 
This package provides data classes which 
hold data from SJI and the slit spectro-
graph. Built on top of the functionality 
provided by ndcube.

This package supports read-
ing and analyzing dynamic 
radio spectra, as a function 
of time, primarily from e-Callisto. It pro-
vides tools for downloading and reading 
data, handling metadata, homogenizing 
data, and subtracting background. This 
package is planned to undergo major 
changes to use astropy/specutils.

This package provides func-
tionality for manipulating
N-dimensional coordi-
nate-aware data. Support is provided for
any combination of axis types such as 
images, images over time, spectrograms, 
slit spectragraphs. The package extends  
Astropy’s NDData data container.

Provides access to HMI, AIA 
and MDI data hosted on the 
JSOC. The drms package 
enables querying the image metadata in 
the JSOC DRMS. It can also be used to 
submit tailored data export requests (e.g., 
movies and images in various formats) 
and download data �les. Used by Fido.
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Figure. Example of transforming a Map to a di�erent time, while accounting for di�er-
ential rotation of the Sun. Panel (a) shows the Sun as observed by SDO AIA in1600 Å on 
a particular day. A large and small sunspot group are highlighted by a red arrow and a 
white arrow, respectively. Panel (b) shows the observation after transforming forward 
in time by two days. Panel (c) shows the real observation at the time of panel (b), 
which compares well to the transformed image, disregarding the magnetic evolution of 
the sunspot groups.

Application of Coordinates
This section shows a number of di�erent applications of coordinates.

Figure. With SDO/AIA and STEREO/A and STEREO/B, it is possible (given speci�c 
dates) to combine combine three EUV images from these satellites to produce a full 
latitude/longitude map of the Sun. This example shows how images in helioprojective 
coordinates can be transformed into heliographic coordinates and overlaid. See the 
example gallery for the full code.
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Figure: Several examples of using the coordinate machinery provided by the sunpy.coordinates subpackage. (a) Magnetic �eld lines traced from a potential �eld extrapolation 
overlaid on an SDO AIA 171 Å observation of an active region from 2019 March 10 00:00:09 UTC. The �eld extrapolation was computed with pfsspy (Stansby 2019). (b) The Venus 
transit as viewed by SDO AIA in 1600 Å. The predicted position of Venus is overplotted in the coordinate frame of the AIA image. (c) A coronagraph image of the solar corona as ob-
served by STEREO-A COR-2. The predicted positions of stars from the Gaia (Gaia Collaboration et al. 2016) Data Release 2 catalog (Gaia Collaboration et al. 2018), marked by circles, 
as well as Mars, marked by a box, are overplotted in the coordinate frame of the image.

Figure. An example demonstrating how you can reproject an image to the view of a 
di�erent observers in this case reprojecting a STEREO A EUVI image as seen by SDO 
(right). The SDO image in the same wavelength band is shown on the left for compari-
son.

One of the most important tasks that occurs before any analysis can take place is to search for and retrieve data. A particular science goal may require data from multiple data pro-
viders, each of which may have di�erent methods for data search and retrieval. This heterogeneity increases the e�ort required by scientists to get the data they need. In order to 
address this issue, the sunpy.net subpackage provides interfaces to many commonly used data providers and catalogs in solar physics.  The most powerful component of sunpy.net 
is the Fido interface for data search and retrieval. Fido provides a uni�ed interface that simpli�es and homogenizes search and retrieval by allowing data to be queried and down-
loaded from multiple data sources simultaneously, irrespective of the underlying client.
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The community-developed, free and open-source 
solar data analysis environment for Python.
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Frames implemented in Astropy

Frames implemented in SunPy

Requires SunPy 1.1

ICRS

HCRS Heliocentric Aries Ecliptic (HAE) Other Astropy frames Earth-centered frames
(including GEO)

Heliographic Stonyhurst (HGS)
Heliocentric Earth Equatorial (HEEQ) Heliocentric Earth Ecliptic (HEE)Geocentric Earth Equatorial (GEI)

Heliographic Carrington (HGC) Heliocentric Cartesian (HCC) Heliocentric Inertial (HCI) Geocentric Solar Ecliptic (GSE)

Helioprojective Cartesian (HPC)

Currently, Fido supports the Virtual Solar Observatory (VSO; Hill et al. 2009), the Joint Science Operations Center (JSOC; see A�liated Packages), and a number of individual data 
providers that make their data available via web-accessible resources such as HTTP(S) websites (RHESSI, SDO EVE, GOES XRS, PROBA2 LYRA, and NOAA sunspot number prediction) 
and FTP servers (NOAA sunspot number, NoRH). A Fido search accesses multiple instruments and all available data providers in a single query. Search queries optionally include a 
variety of attributes, such as instrument, time range, and wavelength. The attributes can be joined using Boolean operators to enable complex queries. The result of a Fido query 
can be inspected and edited before retrieval and is then downloaded via asynchronous and parallel download streams. Fido also recognizes failed data downloads and allows for 
re-requesting �les that were not retrieved. The downloaded �les can then be read into custom data classes.

Figure. A Fido fetch command downloading �les in parallel with overall and individual prog-
ress bars as seen in a Jupyter notebook (left) and in a terminal (above). This functionality is 
powered by the par�ve package.


